Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Front Immunol ; 12: 749291, 2021.
Article in English | MEDLINE | ID: covidwho-1566649

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a causative virus in the development of coronavirus disease 2019 (Covid-19) pandemic. Respiratory manifestations of SARS-CoV-2 infection such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) leads to hypoxia, oxidative stress, and sympatho-activation and in severe cases leads to sympathetic storm (SS). On the other hand, an exaggerated immune response to the SARS-CoV-2 invasion may lead to uncontrolled release of pro-inflammatory cytokine development of cytokine storm (CS). In Covid-19, there are interactive interactions between CS and SS in the development of multi-organ failure (MOF). Interestingly, cutting the bridge between CS and SS by anti-inflammatory and anti-adrenergic agents may mitigate complications that are induced by SARS-CoV-2 infection in severely affected Covid-19 patients. The potential mechanisms of SS in Covid-19 are through different pathways such as hypoxia, which activate the central sympathetic center through carotid bodies chemosensory input and induced pro-inflammatory cytokines, which cross the blood-brain barrier and activation of the sympathetic center. ß2-receptors signaling pathway play a crucial role in the production of pro-inflammatory cytokines, macrophage activation, and B-cells for the production of antibodies with inflammation exacerbation. ß-blockers have anti-inflammatory effects through reduction release of pro-inflammatory cytokines with inhibition of NF-κB. In conclusion, ß-blockers interrupt this interaction through inhibition of several mediators of CS and SS with prevention development of neural-cytokine loop in SARS-CoV-2 infection. Evidence from this study triggers an idea for future prospective studies to confirm the potential role of ß-blockers in the management of Covid-19.


Subject(s)
Adrenergic beta-Antagonists/therapeutic use , COVID-19 Drug Treatment , Cytokine Release Syndrome/drug therapy , Sympathetic Nervous System/drug effects , Anti-Inflammatory Agents/therapeutic use , COVID-19/complications , COVID-19/metabolism , COVID-19/physiopathology , Catecholamines/metabolism , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/metabolism , Cytokine Release Syndrome/physiopathology , Cytokines/metabolism , Humans , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/physiopathology , SARS-CoV-2/pathogenicity , Sympathetic Nervous System/metabolism , Sympathetic Nervous System/physiopathology
2.
FEBS J ; 287(17): 3681-3688, 2020 09.
Article in English | MEDLINE | ID: covidwho-960853

ABSTRACT

In coronavirus disease 2019 (COVID-19), higher morbidity and mortality are associated with age, male gender, and comorbidities, such as chronic lung diseases, cardiovascular pathologies, hypertension, kidney diseases, diabetes mellitus, and obesity. All of the above conditions are characterized by increased sympathetic discharge, which may exert significant detrimental effects on COVID-19 patients, through actions on the lungs, heart, blood vessels, kidneys, metabolism, and/or immune system. Furthermore, COVID-19 may also increase sympathetic discharge, through changes in blood gases (chronic intermittent hypoxia, hyperpnea), angiotensin-converting enzyme (ACE)1/ACE2 imbalance, immune/inflammatory factors, or emotional distress. Nevertheless, the potential role of the sympathetic nervous system has not yet been considered in the pathophysiology of COVID-19. In our opinion, sympathetic overactivation could represent a so-far undervalued mechanism for a vicious circle between COVID-19 and comorbidities.


Subject(s)
COVID-19/metabolism , Coronary Disease/metabolism , Diabetes Mellitus/metabolism , Hypertension/metabolism , Kidney Failure, Chronic/metabolism , Obesity/metabolism , Respiratory Insufficiency/metabolism , Sympathetic Nervous System/metabolism , COVID-19/mortality , COVID-19/pathology , COVID-19/virology , Comorbidity , Coronary Disease/mortality , Coronary Disease/pathology , Coronary Disease/virology , Diabetes Mellitus/mortality , Diabetes Mellitus/pathology , Diabetes Mellitus/virology , Female , Humans , Hypertension/mortality , Hypertension/pathology , Hypertension/virology , Kidney Failure, Chronic/mortality , Kidney Failure, Chronic/pathology , Kidney Failure, Chronic/virology , Male , Obesity/mortality , Obesity/pathology , Obesity/virology , Respiratory Insufficiency/mortality , Respiratory Insufficiency/pathology , Respiratory Insufficiency/virology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Severity of Illness Index , Sex Factors , Survival Analysis , Sympathetic Nervous System/physiopathology , Sympathetic Nervous System/virology
SELECTION OF CITATIONS
SEARCH DETAIL